

Moreover, the chromatin loop organization is well conserved also during neuronal cell differentiation, showing consistency in genomic organization of this region in development. We identified similar loops in 11 human and three mouse cell lines, showing that these loops are highly conserved in different human cell lines and during evolution. Using the Juicebox’s Hi-C dataset, we identified five chromatin loops in the 7q36.3 band, with different extensions related to the size and orientation of the genes located here, and independent from their expression levels. Of the five copies of the MNX1 gene present in K562, four alleles were positioned in the nuclear periphery and only one in the nuclear interior. In this study, we used FISH on 3D-preserved nuclei to investigate the nuclear positioning of MNX1 in the leukemia-derived cell line K562. However, this homeobox gene is frequently activated in leukemic cells and its expression is associated with an altered gene positioning in the leukemia cell nuclei. This region contains the MNX1 gene, which is normally not expressed in human lymphocytes beyond embryonic development. Fluorescence in situ hybridization (FISH) and Hi-C methods are largely used to investigate the three-dimensional organization of the genome in the cell nucleus and are applied here to study the organization of genes ( LMBR1, NOM1, MNX1, UBE3C, PTPRN2) localized in the human 7q36.3 band.
